\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Operation Research

 Subject Code: 5CS03WOR1Branch: M.Sc.I.T. (WebTech)

Semester : 3
Date : 18/03/2019
Time : 02:30 To 05:30
Marks :70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION-I

Q-1 Attempt the Following questions

1 What is OR? 1
2 Write full Form of LPP 1
3 What is slack variable and Artificial variable 2
4 What is Feasible and Infeasible solution 2
5 What is Optimality check? 1

Q-2 Attempt all questions

1 Solve following LP Problem Using Graphical Method Max $Z=3 X_{1}+4 X_{2}$

Subject to $\quad \mathrm{x}_{1}-\mathrm{x}_{2}=-1$
$-\mathrm{x}_{1}+0 \mathrm{x}_{2} \leq 0$
and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
2 Use the Simplex Method to solve the Following L.P Problem
Maximize $Z=4 \times 1+3 \times 2$
Subject to Constraints $2 \mathrm{x} 1+\mathrm{x} 2 \leq 1000$
$\mathrm{x} 1+\mathrm{x} 2 \leq 800$
$\mathrm{x} 1 \leq 400$
x $2 \leq 700$
$\mathrm{x} 1, \mathrm{x} 2 \geq 0$

OR
Q-2 Attempt all questions
1 Solve following LP Problem Using Simplex Method
Max $\mathrm{Z}=5 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2$
Page 1 || 4

$$
\begin{gathered}
5 x_{1}+2 x_{2} \leq 10 \\
3 x_{1}+8 x_{2} \leq 12
\end{gathered}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
2 Write the Algorithm Steps for simplex Method
Q-3
1 Apply MODI method and obtain basic feasible solution by VAM
Attempt all questions

	I	II	III	Supply
A	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{8}$	76
B	$\mathbf{1 6}$	$\mathbf{2 4}$	$\mathbf{1 6}$	$\mathbf{8 2}$
C	$\mathbf{8}$	$\mathbf{1 6}$	24	77
Requirement	$\mathbf{7 2}$	$\mathbf{1 0 2}$	$\mathbf{4 1}$	

2

	D1	D2	D3	D4	Supply
S1	2	3	11	7	6
S2	1	0	6	1	1
S3	5	8	15	9	10
Demand	7	5	3	2	

OR
Q-3 1 Five Men are available to different five jobs find assignment the minimize the

Job Men	I	II	III	IV	V
A	$\mathbf{8 5}$	$\mathbf{7 5}$	$\mathbf{6 5}$	$\mathbf{1 2 5}$	$\mathbf{7 5}$
B	90	$\mathbf{7 8}$	$\mathbf{6 6}$	$\mathbf{1 3 2}$	$\mathbf{7 8}$
C	75	$\mathbf{6 6}$	57	$\mathbf{1 1 4}$	$\mathbf{6 9}$
D	$\mathbf{8 0}$	$\mathbf{7 2}$	$\mathbf{6 0}$	$\mathbf{1 2 0}$	$\mathbf{7 2}$
E	$\mathbf{7 6}$	$\mathbf{6 4}$	$\mathbf{5 6}$	$\mathbf{1 1 2}$	$\mathbf{6 8}$

2 Advantage and disadvantages of Linear Programming

SECTION-II

Q-4

Attempt the Following questions
1 What is Unbounded solution?
2 Write the full form of PERT\& CPM
3 What is Decision variables \& objective Function 2
4 Full Form of AOA \& AON 2

1
Formulate this problem a

	W1	W2	W3	W4	Supply
F1	6	6	11	15	80
F2	4	6	10	12	120
F3	6	4	7	6	150
F4	4	10	14	14	70
F5	$\mathbf{8}$	$\mathbf{8}$	7	9	$\mathbf{9 0}$
Demand	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{1 2 0}$	$\mathbf{8 0}$	

Solution obtained by VAM.
2 Describe the transportation problem with its general mathematical formulation

OR

Q-5 1 Give the mathematical formulation of an assignment problem.

2

Q-6
1
1 A Research and develo

Job	Immediate Predecessor	Time (Days)	Job	Immediate Predecessor	Time (Days)
A	-	$\mathbf{3}$	F	D	$\mathbf{4}$
B	A	$\mathbf{2}$	G	E	$\mathbf{3}$
C	A	$\mathbf{6}$	H	G	$\mathbf{2 5}$
D	A	$\mathbf{3}$	I	F,H	$\mathbf{1 0}$
E	C,D	7	J	B,I	$\mathbf{2 0}$

(1) Draw
the arrow diagram.
(2) Identify the critical path and find the total project duration.

2 Explain events and Activities with suitable example.
Page 3 || 4

OR

Attempt all Questions

1 Following table is given calculate the total estimation time, critical path, total and free float for each non critical activity.

Activity	Duration	Predecessor	Activity	Duration	Predecessor
A	$\mathbf{1 4}$	-	\mathbf{H}	$\mathbf{4}$	E
B	$\mathbf{4}$	\mathbf{A}	\mathbf{I}	$\mathbf{3}$	H,L
C	$\mathbf{2}$	\mathbf{B}	\mathbf{J}	$\mathbf{1 2}$	K
D	$\mathbf{1}$	\mathbf{C}	\mathbf{K}	$\mathbf{4}$	D,F,G
E	$\mathbf{2}$	\mathbf{A}	\mathbf{L}	$\mathbf{2}$	J
F	$\mathbf{3}$	\mathbf{E}	\mathbf{M}	$\mathbf{2}$	H,L
\mathbf{G}	$\mathbf{2}$	\mathbf{E}			

2 Discuss Errors and Dummies in Network.

